The Metastable State of β -Carotene Excited by Pulse Radiolysis

By E. J. LAND

(Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester M20 9BX)

and A. SYKES and T. G. TRUSCOTT*

(School of Chemistry, University of Bradford, Bradford 7)

Summary Using pulse radiolysis the life-time and extinction coefficient of the β -carotene triplet absorption at 515 nm, have been estimated to be 9 μ sec. and ca. 2 \times 10⁵ м⁻¹ст⁻¹.

An excited state of all-trans- β -carotene can be produced by photosensitization;¹ this excited state is assumed to be the lowest triplet and absorbs with λ_{\max} 515 nm and unknown extinction coefficient. Pulse radiolysis of β -carotene in hexane has allowed us to observe the same absorption without the use of a sensitizer. The first-order decay constant for the carotene triplet has been found to be $1.1 \pm 0.1 \times 10^5$ sec.⁻¹. This is similar to the first-order rate of decay of retinene and retinol triplet,²⁻⁴ and would not be too fast to be observed in previous flash spectroscopic studies.⁵⁻⁷ It has been suggested¹ that the previous failure to observe a β -carotene triplet absorption when carotene is flashed alone is due to the triplet state decaying to the ground state in less than about $1 \,\mu$ sec. The value we have now obtained discounts this idea, and a more likely explanation is that the $S \rightarrow T$ crossover efficiency of this molecule is very low. High-energy excitation in aliphatic hydrocarbons yields some solute triplets formed independently of the singlet state.⁸

We have also observed a depopulation of the singlet state of β -carotene between 380 and 500 nm in experiments both with and without sensitizers. This has allowed us to

estimate a value of the extinction coefficient of the β -carotene triplet at 515 nm of about 2.3×10^5 M⁻¹ cm⁻¹. This value is a maximum value and would be lower if there is any triplet absorption in the 380-500 nm region. We have also estimated a value of the extinction coefficient of β -carotene in the presence of naphthalene using the technique described by Land.⁹ This leads to a value of about $1.7 \pm 0.4 \times 10^5 \,\text{m}^{-1} \,\text{cm}^{-1}$. Mathis⁶ observed a depopulation of lutein, a molecule similar to β -carotene, using laserflash spectroscopy. From this an extinction coefficient at 518 nm of 4×10^5 M⁻¹ cm⁻¹ was estimated.

There is considerable interest in the energy level of the lowest triplet state of β -carotene. Energy-transfer studies using flash spectroscopy have shown that the level is below that of naphthacene ($E_{\rm T}=29\,{\rm kcal.\,mole^{-1}}$).¹ We have observed that oxygen quenches the carotene triplet at a rate comparable with the oxygen quenching of naphthalene triplet. If this reaction leads to the formation of singlet oxygen $({}^{1}\Delta_{a})$, the energy level of the carotene triplet would be located at 25.5 ± 3 kcal. mole⁻¹. Since we have also shown that carotene quenches the triplet state of pentacene¹⁰ at rates approaching the diffusion limit the carotene triplet energy level would be at the lower end of the above range. These observations are difficult to correlate with the quenching by β -carotene of the reaction of singlet oxygen $({}^{1}\Delta_{g})$ reported by Foote and Denny.¹¹

A.S. acknowledges an S.R.C. research studentship.

(Received, January 2nd, 1970; Com. 005.)

- ⁶ P. Mathis, Photochem. and Photobiol., 1969, 9, 55.
- ⁷ T. Miwa and T. Miwa, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 1968, 62, 141.
- ⁸ E. J. Land and A. J. Swallow, *Trans. Faraday Soc.*, 1968, 64, 1247.
 ⁹ E. J. Land, *Proc. Roy. Soc.*, 1968, A305, 457.
 ¹⁰ A. Sykes and T. G. Truscott, unpublished results.

- ¹¹ C. S. Foote and R. W. Denny, J. Amer. Chem. Soc., 1968, 90, 6233.